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Let f be a quasiconformal reflection of the 3-sphere S3 and let Σ denote
the fixed point set of f .

Problem 1. Is Σ quasisymmetrically equivalent to the 2-sphere S2?

Problem 2. Is Σ topologically equivalent to the 2-sphere S2?

We know from topology that Σ is a cohomological 2-sphere (Σ and S2 have
the same cohomological groups). We can show that Σ is locally contractible
(a necessary condition for Σ to be quasisymmetrically equivalent to S2).
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1. Length of Trees. If X is a finite tree, then we already know that there
exists a configuration αX which minimizes L over all configuration αX on
X: L

(
αX

)
= infα∈AX

L(α).
Problem: Find an algorithm to get:

inf
X

L(αX).

One idea, proposed by Jo Fu (University of Georgia), is to enlarge the
space of admissible graphs to allow deformations from one tree to another:

One way to enable this is to allow loops, e.g.:
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2. Teichmüller Space of Conformal Structures for Polyhedra.
Let X2 be a 2-dimensional topological polyhedron, such as the following:

Problem: Give a description of the Teichmüller space of X2, similar to
the description of Teichmuller spaces for plane domains or surfaces.

This description should allow one for example to formulate and prove a
Gauss-Bonnet type theorem.
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Open Problems on Rotating Drops

Problem 1. We have shown that in the two-parameter family of rotation-
ally symmetric rotating drops parameterized by λ and c, there is for each c
a λ corresponding to a toroidal drop. Numerically, there is in fact a smooth
curve λ = λ(c) in the parameter space corresponding to toroidal solutions.
We are unable to prove that, and it is difficult to compute derivatives of the
relevant quantity (the half-period-height h) with respect to λ and c and de-
termine its monotonicity. Furthermore, the monotonicity of h is somewhat
complicated (numerically), so a delicate analysis will be required.

Problem 2. Assuming the smooth curve described above is well defined
etc., we note that the two-parameter family was obtained after geometric
homothety. What is the relationship between volume and λ for simply en-
closed drops (no container walls) after rescaling? In particular, we know
the asymptotics for all surfaces that enclose a given volume suggest non-
uniqueness, i.e., there should be two geometrically different surfaces at the
same rotation rate (among the spheroids and toroidal surfaces) that en-
close the same volume, but we don’t understand how many such surfaces
there might be, etc. The same asymptotics suggest that as rotation rate
increases, there is a critical rate at which there can be no equilibrium for
a given volume. Is this correct? If so, what happens at this critical rate.
More precisely, there should be a curve in ω (angular velocity)-λ-c space
that describes equilibria for a given volume and increasing ω (starting with
spheroidal solutions and then moving through toroidal solutions). What
does this curve look like.

Problem 3. Prove that the toroidal solutions are unstable. (I think the
stability question for the spheroids is also still open; see papers of Brulois,
but the toroidal solutions may be easier.)

Problem 4. If the toroidal solutions are unstable in the classical (second
variation) sense, why do we see them experimentally? Give an alternative
notion of stability that allows quantitative prediction. By considering the
breakup of water jets (n.b., Rayleigh), I suggest that there should be a
notion of ”dynamic stability” that results from the motion of the liquid.
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Problem 1. In [1] and [2], it was shown for two different reflector construc-
tion problems that in each case, the ray tracing map solving the problem is a
minimizer (or a maximizer) of a certain Monge-Kantorovich cost functional.
Explicitly, we have the following statement:

Let P0 : Ω → T be the ray tracing map of a reflector system solving the
problem in [i] (for i = 1, 2). Then P0 minimizes the transportation cost∫
Ω K[i](x, P (x))I(x)dx among all plans P : Ω → T .

Here we have the following domains Ω and T and cost functions:

In [1]: Ω, T ⊆ Rn are bounded convex sets, K[1](x, p) = 1
2β (β2 − |x − p|2),

x ∈ Ω, p ∈ T . (Here β > 0 is some constant; note that the statement is true
for any β.)
In [2]: Ω, T = Sn, and K[2](x, p) = − log(1− 〈x, p〉), x, p ∈ Sn.

Question: Is there a common geometrical (or physical) characterization
of the two cost functions K[i](x, p), i = 1, 2, as corresponding objects in the
Euclidean (for [1]) and spherical (for [2]) geometries? If this is the case,
what is the corresponding cost function in hyperbolic n−space, and is it
possible to associate this cost function with a reflector problem as well?

Problem 2. Is it possible to apply the techniques of [1] and [2] to the
problem of constructing a reflector pair that transforms a cone of rays emit-
ted by a point source to a beam of parallel rays? (For more details see the
last section of [3].) (A part of the problem is to determine whether it is
possible to rewrite the inequality ρ(x) + |ρ(x) · x− (p, z(p))|+ z(p) ≥ ` (for
x ∈ Ω ⊆ Sn, p ∈ T ⊆ Rn) in the form F (x, ρ(x)) + G(p, z(p)) ≥ K(x, p).)
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