Radial Limits of Nonparametric Prescribed Mean Curvature surfaces

Mozhgan (Nora) Entekhabi Department of Mathematics, Statistics & Physics Wichita State University Wichita, Kansas, 67260-0033

Abstract

Consider a bounded solution f of the prescribed mean curvature equation over a bounded domain $\Omega \subset \mathbb{R}^2$ which has a corner at (0,0) of size 2α and assume the mean curvature of the graph of f is bounded. If the corner is nonconvex/reentrant (i.e. $\alpha \in (\frac{\pi}{2}, \pi)$)), then the radial limits

 $Rf(\theta) \stackrel{\text{\tiny def}}{=} \lim_{r \downarrow 0} f(r \cos \theta, r \sin \theta)$

exist for all interior directions (e.g. $\theta \in (-\alpha, \alpha)$ if $\theta = \pm \alpha$ are tangent rays to $\partial\Omega$ at (0,0)), no matter how wild is the trace of f on $\partial\Omega$. If the corner is convex/protruding (i.e. $\alpha \in (0, \frac{\pi}{2}]$) and some extra conditions are satisfied, then the radial limits at (0,0) from interior directions continue to exist. This generalizes, for example, known results about radial limits of capillary surfaces.