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The fractional differentiation by Chen-Hadamard
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Since the Chen construction can be applied to functions with an arbitrary growth
when x — oo or x — 0, this construction is more convenient when applied to such
functions than the integro-differentiation by Hadamard [1] itself. As usual, the
fractional derivative is to be treated as a certain limit. To this end, several types of
different ”truncation” of the Chen-Hadamard fractional derivative are introduced,
denoted by
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where % <p<l p= |ln%| In %, £ > a > 0. The following inversion theorem is

valid, where J%¢ stands for the corresponding Chen-Hadamard fractional integral.
Theorem 1. Let f = J%, ¢ € L, (RL, df") (or ¢ € Li,"c (RL, va—z)),
1<p<oo, a>0,c>0. Then
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The limits in (1)-(2) can be understood both in L, (RL, <)

or Lloe (R}, %), correspondingly, 1 < p < oo, except for the case p = 1 in (2),
or almost everywhere.
Theorem 2 For the function f(x) to be presented as f(x) = (T&p)(x), where
p € LLOC(R}H%);Q > 0,¢c > 0,1 < p < oo, it is necessary and sufficient that
|In |~ f(x) € LI*¢(RY, %), and
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exists in L)°(Ry, %F).
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