On the discrete spectrum of Schrödinger operators with strong magnetic fields of compact support.

RAINER HEMPEL TU Braunschweig

We discuss the discrete eigenvalues of magnetic Schrödinger operators in \mathbf{R}^2

$$H(\lambda \vec{a}) = (-i\nabla - \lambda \vec{a})^2 + V(x), \qquad \lambda \ge 0,$$

where V is a bounded potential and \vec{a} a magnetic vector potential of class C^1 in \mathbb{R}^2 which is such that the associated magnetic field $\mathcal{B} = \operatorname{curl} \vec{a}$ has compact support consisting in a finite number of components. The interesting case is when the flux $\int \mathcal{B} dx$ is non-zero. As for the unperturbed operator $H = -\Delta + V$, we consider the periodic case as well as the case where H has compact resolvent, like the harmonic oscillator.

More precisely, we study the (signed) flow of spectral multiplicity across a fixed energy level $E \in \mathbf{R} \setminus \sigma(H)$, where $\sigma(H)$ is the spectrum of H. It is shown that there exists a sequence of couplings $\lambda_k \to \infty$ such that the total signed spectral flow for $H(\lambda_k \vec{a})$ corresponds to the spectral flow for the family of operators $H + \lambda \chi_{\Omega}$, as $\lambda \to \infty$, where $\Omega = \{\mathcal{B}(x) \neq 0\}$.