The n-dimensional Heat Equation with Nonlinear Generalized Wentzel Boundary Conditions

GISELE GOLDSTEIN U of Memphis

Of concern is the Cauchy problem for the heat equation on $D \subset \mathbb{R}^n$

$$u_t = \nabla \cdot (\alpha(x)\nabla u) \quad x \in D, t > 0$$

 $u(x,0) = f(x) \quad x \in \partial D$

with nonlinear generalized Wentzel boundary conditions

$$\nabla \cdot (\alpha(x)\nabla u) + b(x)\frac{\partial u}{\partial n} \in c(x)\beta(x,u) \text{ for } x \in \partial D, t > 0.$$

The usual Wentzel boundary condition corresponds to b(x)=c(x)=0. Here we assume that $\alpha\in C^1(\overline{D}),\ \alpha>0$ on $\overline{D},\ b,c\in C(\partial D),\ b\geq 0,\ c\leq 0$ and β is a maximal monotone graph in \mathbb{R}^2 containing the origin. We present an L^p theory for this problem, which gives rise to a nonlinear semigroup on a Banach space X^p , $1\leq p<\infty$ and on $C(\overline{D})$ in the case $p=\infty$. Hence, we obtain a solution to the initial boundary value problem. One novel feature of this work is that X^p is not $L^p(D)$ but rather an L^p space based on functions on D and on ∂D , with a measure on ∂D based on the boundary conditions. Questions of regularity and smoothing of the solutions are also obtained via Nash-Moser iteration.

This is joint work with Angelo Favini, Jerry Goldstein, and Silvia Romanelli.