Asymptotic expression of negative eigenvalue number of an operator differential equation with even order according to small parameter having weighted function in eigenvalue

INCI ALBAYRAK

Yildiz Technical University Mathematical Engineering Davutpasa Istanbul Turkey

Let H be separable Hilbert space and while $\rho(x) > 0$ is a continuous function in $[0,\infty)$. Let H_1 a Hilbert space of H-valued measurable function $f(x), (0 \le x < \infty)$ that satisfies $\int_0^\infty \rho(x) \|f(x)\|^2 dx < \infty$ condition. Let L_h , an operator generated by differential expression

$$\ell_h(y) = \frac{1}{\rho(x)} \{ (-1)^n h y^{(2n)} - Q(x)y \}, \qquad (0 \le x < \infty)$$

and boundary conditions

$$y^{(j)}(0) = 0, \qquad j = 0, 1, ..., n - 1$$

in H_1 space.

Q(x) in $\ell_h(y)$ is an operator function which satisfied $Q^*(x) = Q(x) \ge 0$, $Q(x) \in Q(x)$ $\sigma_{\infty}, \lim_{x \to \infty} \|Q(x)\| = 0$ and h > 0 is small parameter. Under this conditions, negative spectrum of L_h operator consists of eigenvalues.

Let $N_h(\epsilon)$ denoted numbers of negative eigenvalues of L_h that smaller than $-\epsilon, (\epsilon > 0).$

When $h \to 0$

$$N_{\epsilon}(h) \sim \frac{1}{\pi \sqrt[2n]{h}} \sum_{j} \int_{\alpha_j(x) > \epsilon} \rho(x) \sqrt[2n]{\alpha_j(x) - \epsilon} dx$$

is obtained. Here, $\alpha_1(x) \ge \alpha_2(x) \ge \dots$ are eigenvalues of Q(x). While n = 1, asymptotic expression of $N_h(\epsilon)$ is found in [1].

REFERENCE

1. M.Bayramoğlu, I.Albayrak, Second International Symposium on Mathematical and Computational Applications, Baku, September 1-3,1999.

Joint work with Oya Baykal and Mehmet Bayramoğlu.